
24

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

EFFECT ON APPLICATION BY MECHANISM OF
GDI RENDERING FUNCTIONS AND SOLUTIONS

Chunmei Chen1*, Qingyuan Li2 and Huiling Jia1

GDI drawing-functions in Windows API were analyzed and found that GDI drawing-function
mapped the world coordinate system (Cartesian coordinate system) origin (0, 0) to the pixel
center between (0, 0) and (1, 1) of the device coordinate system (screen coordinates). It pointed
out that in order to maintain the same graphic geometric characteristics and avoiding overprinting,
GDI drawing functions compromised with the endpoints and the boundary pixels, which caused
some strange phenomenon many programmers have not found and it was difficult to understand.
In response to these phenomena, explanations are given. In addition, the effect on some
applications is pointed out and solutions are proposed.

Keywords: Graphics Device Interface, Drawing-Function; Primitive Output, Geometric
Characteristics

*Corresponding Author: Chunmei Chen 815310703@qq.com

INTRODUCTION
GDI (Graphical Device Interface) , one of the

subsystems of Windows operating system, is

responsible for displaying graphics on the display

device. GID can complete series of display work

from Graphical User Interface(GUI) and graphics

rendering to printer and plotter output (Lie, 2002).

At present, most of graphics system development

is still using GDI drawing functions packaged in

the Windows API. When the programmers call

the GDI drawing functions, they do not understand

the specific drawing mechanism. For some

specific applications, the programmers may find

the GDI drawing functions and some related

functions can not get correct results (Li, 2011).

Therefor, it is necessary to understand the output

methods, defects and he compromise processing

1 China University of Mining & Technology, Beijing, China.
2 Chinese Academy of Surveying and Mapping, Beijing, China.

ISSN 2395-647X www.ijges.com
Vol. 1, No. 3, December 2015

© 2015 IJGES. All Rights Reserved

Int. J. of Geol. & Earth Sci., 2015

Research Paper

methods of GDI drawing functions deeply and

clearly. So that programmers can know the

tolerance or ever error and get more accurate

answers from the relevant calculation, such as

the intersection and distance of geometric

primitives, by reprogramming the applications. On

the basis of the research of Windows drawing

functions by LI Qing-yuan, the author studied the

mechanism of GDI drawing functions, figured out

the fundamental reason for the tolerance and error

of the GDI drawing functions and gave the

corresponding solutions.

ESSENCE OF GDI DRAWING
FUNCTIONS
First of all, it is clear that in order to describe

graphics, a suitable two-dimensional or three-

25

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

dimensional Descartes coordinate system(world

coordinate system) must be determined, and then

use the geometric description (coordinate

position, etc.) of the graphics in the world

coordinate system to define the graphics objects.

Then the display of the object can be achieved

by transmitting the scene information to the

observation function, identifying the visible face

through observation function and mapping the

objects to a video monitor (Donlad, 2010). After

Specifying a graphic geometric elements in the

world coordinate system, the output element will

be projected onto the display area of the two-

dimensional plane corresponding to the output

device and then be scanned and converted to

integer pixel position of the frame buffer.

The application uses GDI drawing functions

and usually shows on a computer screen window.

The location in the computer screen window

(video monitor) is described by the screen

coordinates corresponding to the integer pixel

position of the frame buffer , and it is called a

screen coordinate system. The coordinate value

of a pixel include the x and y values, the y

represents the number of scanning lines, the x

represents the column number (the x value of

scanning lines). Screen refresh and other

hardware processing generally start to address

the screen pixels from the upper left corner of

the screen (Donlad, 2010)]. As shown in Figure

1, from the top scan line of the screen to the

bottom scan line,they are numbered by 0,1,2, ...,

ymax, the pixel location in each row are numbered

from 0 to xmax from left to right. The graphics

drawn through GDI functions ultimately

represented by discrete integer pixels.

Readers of this article should first understand

the common line drawing algorithm (linear

equation, DDA algorithm, Bresenham line drawing

algorithm) and the common area filling algorithm

(Pixel judgment algorithm, universal scan line fill

algorithm, boundary fill algorithm, flood fill

algorithm).

GDI drawing functions use the logical

coordinates. Common GDI drawing functions are:

LineTo for drawing line, Polyline for drawing

polyline, Polygon for drawing polygon, RECT and

the corresponding function FillRect for rendering

rectangle, Ellipse for drawing ellipse, RGN ::

CreateRectRgn, RGN :: CreatePolygonRgn and

the corresponding fill function-FillRgn for

rendering region. This article will apply to the

default mapping coordinates MM_TEXT[4] to

draw these geometries using these drawing

functions in Visual Studio 2010 under Windows7

operating system, and then analyze the display

of the line endpoints, area vertexes and boundary

pixels.

GDI DRAWING LINE
FUNCTION
GDI provides the function that draw a straight line

segment, BOOL CDC :: LineTo (POINT point) and

the functions that draw a line segments, CDC ::

Polyline (const POINT * lpPoints, int nCount).

Figure 1: Screen Coordinate System

26

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

Processing of Endpoint Pixels by Line to
Function

Line-draw function, BOOL CDC::LineTo (POINT

point), is annotated in the MSDN by “The LineTo

function draws a line from the current position up

to, but not including, the specified point. “

(Jianchun, 2004)

A straight segment is defined by its start and

end point coordinates . To show a line on the

computer screen, the graphics system first

projects the two end points to the location of

integer screen coordinates, and then uses one

line drawing algorithm (linear equation, DDA

algorithm, Bresenham line drawing algorithm ,the

location of the pixels between two end points may

not be exactly same) to determine the pixel

location that make the linear path between two

end points nearest. This process will digitize a

line segment to a group of adjacent and discrete

integer screen pixel positions (screen coordinate).

In general case , these locations are approximate

to the actual line path (logical coordinates) except

the horizontal line and the vertical line. For

example, The real position of the line (7.39, 9.64)

is convert to the pixel position (7,10). In addition,

in the world coordinate system, a point presents

a position without size in math, a line express a

line without width in math as well, its area is zero,

but when they are shown on the screen, they

should occupy one pixel size or width at least.

So, scan conversion algorithm must take into

account the limited size of the pixels to maintain

the geometric characteristics of the graphics

(Mingtian, 1999).

In the function OnDraw (CDC * pDC) in the

View class, a line is drawn from two directions of

the positive and negative. After the amplification

of eight times, the results are shown in Figure 2

and 3. (The following figures are the result of the

graphics which are copied to the Windows

drawing software and magnified eight times and

shown with grid lines, the essence of graphics

on the computer screen (pixel) can be clearly

seen) The results show that the starting pixel

position of the segment is correct, while the end

pixel do not exist.

There are two advantages for Windows to do

this: on the one hand it keeps the geometry length

of a line, for example the line drawing from (0,0)

to (10,0) whose geometrical length is 10 logical

units has 10 pixels units as well after converting

to the screen through scanning; On the other hand

,when draw lines end to end in the same direction,

the end of the first segment, that is the starting

point of the second segment, will not repeat to

draw (David, 1987; Zhigang, 2008). The drawing

line function will improve efficiency by this way.

The same line in a Cartesian coordinate system

displays different when draw in different directions

in the device coordinate system, and this

inconsistency depending on which extreme point

is the starting point (shown), which is the end

point (not shown) (microsoft Company). However,

this process way has a defect, if some lines are

drawn in a positive direction and some are drawn

in the opposite direction in the graphics system,

that will make the adjacent segments separate,

as shown in Figure 3. This defect can be avoided

by drawing the primitives in the same direction.

//The results to draw four segments in the

positive direction are shown in Figure 2.

pDC->MoveTo(0,0);

pDC->LineTo(10,0);

pDC->MoveTo(1,2);

pDC->LineTo(1,10);

27

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

pDC->MoveTo(5,10);

pDC->LineTo(15,3);

pDC->MoveTo(25,10);

pDC->LineTo(18,1);

//The results to draw four segments in the

opposite direction are shown in Figure 2.

pDC->MoveTo(10,0);

pDC->LineTo(0,0);

pDC->MoveTo(1,10);

pDC->LineTo(1,2);

pDC->MoveTo(15,3);

pDC->LineTo(5,10);

pDC->MoveTo(18,1);

pDC->LineTo(25,10);

//draw in the positive direction(Figure 3)

pDC->MoveTo(0,5);

pDC->LineTo(10,5);

//draw in the opposite direction(Figure 3)

pDC->MoveTo(20,5);

pDC->LineTo(10,5);

In Figure 3, the two segments are adjacent at

(10,5) in the geometric sense, while they are

separate on the pixel (10,5) in the drawing result.

In the application, if it is necessary to get the

same result to draw the line segment in the

positive direction and opposite direction, and

remain the geometric characteristics at the same

time, then the function CDC::SetPixel (POINT

startPoint, COLORREF backColor) can be used

to draw in the opposite direction to make the

starting pixel not display (background color), and

the function CDC::SetPixel (POINT endPoint,

COLORREF penColor) can be used to make the

end-pixel display (pen color) (Figure 4 left). If it is

simply necessary to draw the extreme points in

the correct screen coordinates but do not

consider the geometric characteristics of

segments, the function CDC::SetPixel (POINT

endPoint, COLORREF penColor) can be used

to make the end pixel displayed (Figure 4 right).

As shown as Figure 2 and 4, using this method,

all the pixels on the line have the same screen

Figure 2: Lines Drawing in Forward
Direction(left) and Backward Direction(right)

(Pixels in Gray Color are not Exist in Fact)

Figure 3: Adjacent Lines
in Opposite Directions

28

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

location. In the application, the impact of line

drawing algorithm and drawing direction should

be considered to calculate the distance between

the point and the segment using pixel algorithms.

If you want to judge whether the point is on the

line segment, it would be best not to use pixel

algorithms. In fact, the line drawing algorithm is

to digitize the segment into a set of discrete

integer position, these positions are approximate

to the actual line except the horizontal and vertical

segments (Donlad, 2010).

Processing of Endpoint Pixels by Polyline
Function

The Polyline drawing function CDC::Polyline

(const POINT * lpPoints, int nCount) comments

in the MSDN : The Polyline function draws a series

of line segments by connecting the points in the

specified array (Microsoft Company) .

According to MSDN, polyline is formed by

connecting a group of points to a series of

connected line segments, and the expected

results should show all the discrete points,

including the extreme point (start point and

endpoint).

But compare the result of drawing in the

positive direction and the opposite direction by

the function- Polyline (Figure 5), it will be found

that the beginning and intermediate vertex

coordinates have corresponding pixel points but

the last point, and the points except the endpoints

of the lines drawing from positive and negative

directions have the same pixel screen positions,

but the lines does not meet the geometric

characteristics of the graphics in the Cartesian

coordinate system. In fact, The function Polyline

call the function LineTo circularly (Li, 2011), and

the vertex pixels have no overprinted, the end to

end adjacent lines drawn in the same direction

have no overprint at the same time.

//Draw a polyline in the positive direction, Figure

5-left

CPoint ps (Chen, 2004);

ps[0].x = 1; ps[0].y = 10;

ps[1].x = 6; ps[1].y = 3;

ps[2].x = 20; ps[2].y = 10;

ps[3].x = 24; ps[3].y = 5;

pDC->Polyline(ps,4);

//Draw a polyline in the opposite direction,

figure 5-right

ps[0].x = 24; ps[0].y = 5;

ps[1].x = 20; ps[1].y = 10;

ps[2].x = 6; ps[2].y = 3;

ps[3].x = 1; ps[3].y = 10;

pDC->Polyline(ps,4);

In the application, if it is necessary to display

Figure 4: Two Solutions to Drawing Lines

29

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

the pixel of the end of the lines, the function

CDC::SetPixel (POINT lastPoint, COLORREF

penColor) can be used (Figure 6). And the line

CDC::Polygon for drawing polygon, Rectangular

RECT class and the corresponding fill function-

FillRect, CDC::Ellipse for drawing ellipse,

RGN::CreateRectRgn for create rectangular

region, RGN::CreatePolygonRgn for create

polygon region and the corresponding filling

function-FillRgn. Then it will mainly analyze the

filling of polygon area (including rectangle).

In Computer Graphics, there are two kinds of

methods to represent the polygon: vertex

representation and lattice representation. Lattice

representation describes a polygon using the set

of pixels inside the polygon, it loses lots of

important geometry information (Such as

boundary, vertex, etc.) But it is the representation

necessary for the raster display system (such

as a computer screen) to display (David, 1987).

The conversation from vertex representation to

lattice representation called polygon scan-

conversion. It firstly start from the vertices

information of the polygon, calculate the set of

pixels inside the polygon, and then writes the

value of its color into the corresponding unit of

the frame buffer. The algorithm of polygon scan-

conversion that are commonly used include: point

by point judgment algorithm, scan line algorithm,

edge fill algorithm and flood fill algorithm.

Region Filling Function Polygon

The annotation of Polygon in MSDN: The Polygon

function draws a polygon consisting of two or

more vertices connected by straight lines. The

polygon is outlined by using the current pen and

filled by using the current brush and polygon fill

mode.

The function CDC::Polygon (const POINT *

lpPoints, int nCount) use the boundary drawn by

current brush to surround the polygons, and use

the current brush to fill a polygon. The polygon

Figure 5: Polylines Drawing in Forward
Direction(left) and Backward Direction(right)

(Pixels in Gray Color are not Exist in Fact)

Figure 6: Solution to Drawing Polylines

drawn in the positive direction has the same pixel

positions with the line drawn in the opposite

direction.

GDI DRAWING REGION
FUNCTION
The functions of GDI to draw area include:

30

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

boundary drawn by the function of Polygon

includes all the specified vertices pixel

coordinates, but the geometry characteristics of

the polygon are inconsistent. Such as the

rectangle shown in Figure 7 (left), nine pixels long

and 7 pixels wide, but it is 9-1 = 8 long, and 7-1 =

6 wide defined by logical coordinates. Additionally,

the common boundary will overprint when the

adjacent polygons are drawn by the function of

Polygon. As shown in figure 7 (right), the right

rectangle is drawn after the left rectangle, then

the right edge of the left rectangle will be

overwritten by the left edge of the right rectangle,

which led to the repeat rendering in the same pixel

position.

//Rectangle drawn by polygon-function (Figure

7 left)

CPoint ps[4];

ps[0].x = 1; ps[0].y = 1;

ps[1].x = 1; ps[1].y = 7;

ps[2].x = 9; ps[2].y = 7;

ps[3].x = 9; ps[3].y = 1;

pDC->Polygon(ps,4);

//Adjacent rectangles drawn by polygon-

function(figure7 right)

ps[0].x = 9; ps[0].y = 1;

ps[1].x = 9; ps[1].y = 7;

ps[2].x = 20; ps[2].y = 7;

ps[3].x = 20; ps[3].y = 1;

pDC->Polygon(ps,4);

Ellipse Filling Function Ellipse

The annotation of Ellipse in MSDN : The Ellipse

function draws an ellipse. The center of the ellipse

is the center of the specified bounding rectangle.

The ellipse boundary is drawn by current pen and

interior region is filled by the current brush.

It can be seen from the example that the ellipse

or circle (Figure 8) drawn by the function of

CDC::Ellipse retain the geometrical

characteristics (long axle, short axle, diameter).

The ellipse drawn by the function of Ellipse also

has some drawbacks (aliasing), such as the

brown pixels shown in Figure 8 (actually does

not exist) should be the boundary of the circle.

This shows that the the boundary pixels (black)

of the circle is not accurate.

//The ellipse has semi-major axis of 8 pixels

and semi-minor axis of 6 pixels (Figure 8 left)

pDC->Ellipse(1,1,9,7);

//The circle has a diameter of 10 pixels (Figure

8 right)

pDC->Ellipse(0,0,10,10);

FillRect0FillSolidRect and FillRgn

Scan line algorithm is commonly used to convert

Figure 7: Rectangle(left) and Adjacent Rectangles(right) Drew by Polygon-function

31

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

the polygon (rectangle). The algorithm fill the

polygon (rectangle) by scan-converting each

central scan line across the entire drawing

window. The filling process of a scan line can be

divided into the following three steps:

(1) Get the intersection points of each scanning

line and polygon edges;

(2) Sort the intersection points by the x

coordinates from small to large;

(3) Pair the intersection points and fill each

section.

MSDN did not give the method to fill polygons

with GDI drawing functions, but lots of

experiments show that, FillRect, FillSolidRect and

FillRgn use the following rounding rules in the

scan conversion of the intersection points on the

boundary.

Assuming that a non-horizontal edge intersect

with the central scanning line y=e (e is an integer),

and the abscissa of the intersection point is

denoted by x, then there are several conditions:

(1) x is a decimal, that is the intersection point (x,

e) is located in the non-pixel center position of

scan line y = e. If the intersection point is on

the left edge of the polygon, then choose the

right boundary pixel ((int) x + 1, e). If the

intersection point is on the right side of the
polygon boundary, choose the left boundary
pixel ((int) x, e).

(2) If the intersection point (x, e) is right located
on the integer pixel (pixel center), if (x, e) is on
the left edge of a polygon, regarded it as
belonging to polygons; if (x, e) is on the right
border of a polygon, then it does not belong to
the polygon.

(3) In (2), if the intersection point (x, e) falling on
the center pixel is the vertex of a polygon, each
edge of the polygon will be regarded as
bottom–closed and top-open, which is
equivalent to remove the pixel on the up

endpoint of each edge.

It should be noted that, in MM_TEXT mapping,

the origin is in the left corner , the positive direction

of Y-axis is downward. The bottom and top in

“bottom–closed and top-open” is opposite with

the bottom and top of the computer screen.

In addition, since the horizontal edges are

parallel with the scan lines, and in fact the

horizontal edges has no effect in the scan

conversion algorithm, so they can be removed in

the pretreatment of the algorithm.

RECT class and FillRect and Rectangle
(LPRECT lprect)

The annotation of RECT in MSDN: By convention,

the right and bottom edges of the rectangle are

Figure 8: Ellipse (left) and
Circle(right) Drew by Ellipse-function

32

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

normally considered exclusive. In other words,

the pixel whose coordinates are (right, bottom)

lies immediately outside of the rectangle. For

example, when RECT is passed to the FillRect

function, the rectangle is filled up to, but not

including, the right column and bottom row of

pixels. This structure is identical to the RECTL

structure.

The function of FillRect fills the entire rectangle,

including the left and top boundary, but does not

fill the right and bottom boundaries.

It can be found from the experimental results

and the intersection point rounding rules and

MSDN annotations that: the function of

CDC::FillRect and CDC::FillSolidRect fill the

rectangle defined by CRect with the right

boundary and the bottom boundary not displayed

(Figure 9a). This treatment method maintains the

geometric characteristics (length and width)

unchanged, and explains the reason why the

points on the right boundary and the bottom

boundary are judged to be outside the rectangle

using PtInRect (RECT, POINT) to determine

whether the point is within the rectangle. Because

the function of PtInRect (RECT, POINT) algorithm

uses pixel algorithm, all pixels that are displayed

in the rectangle will return the true value.

)

CPen pen(PS_SOLID, 1, RGB(0,0,0));

CPen *oldpen = pDC->SelectObject(&pen);

CBrush brush(RGB(100,100,100));

CRect rect(1,1,9,7);

pDC->FillRect(&rect,&brush);//Figure 9(a)

//pDC->Rectangle(&rect);//Figure 9(c)

pDC->SelectObject(oldpen);

BOOL yn = 0;

CPoint pt;

pt.x = 9; pt.y = 7;

yn = PtInRect(rect,pt); //return 0

//return 0

In the application, if you do not consider the

geometric characteristics of the rectangle, and

need PtInRect to return the desired results, this

can be done to add 1 to the x and y coordinate

values of the vertices in the bottom-right corner

of the rectangle when to display, then the right

boundary and lower boundary of the original

rectangle (Figure 9 (b) blue dotted boundary) will

be judged to be in the original rectangle.

If you want to keep the geometric

characteristics of the rectangle, and want
PtInRect returns the desired results, it can be
done to improve the PtInRect algorithm as
following, so that the points on the right boundary
and the bottom boundary are judged to be within
the rectangle.

BOOL PtInRectEx(CRect rect, CPoint point)

{

if(point.x == rect.right &&
(point.y<=rect.bottom &&
point.y>=rect.top))

return TRUE;

else if(point.y == rect.bottom &&
(point.x<=rect.right && point.x>=rect.left))

Figure 9: CRect Filled by GDI
(pixels in gray color are not exist in fact)

(a) (b) (c)

33

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

return TRUE;

else

return rect.PtInRect(point);

}

It should be noted that the rectangle drawn by

the function of CDC::Rectangle (LPCRECT

lprect) (Figure 9 (c)), the black boundary pixels in

the right and bottom are not the real boundaries

of the rectangle. It returns zero when to pass the

points on the right boundary and bottom boundary

to the PtInRect function. It returns the true value

when to determine the points on the up boundary

and the left boundary. The annotation of

Rectangle in MSDN can confirm this too: The

rectangle that is drawn excludes the bottom and

right edges. It also can be understood that the

function is to map world coordinates into the

screen position between pixels, so the object

boundary (Figure 9 (c) blue dashed boundary) is

aligned with the pixel boundaries (Figure 9 (c)

black pixel boundaries), but not aligned with the

pixel (area) center [3]. It not only displays the

rectangle boundaries but also maintains the

geometrical characteristics of the rectangle.

CRgn class and CRgn::CreatePolygonRgn,
CRgn::CreateRectRgn and CDC::FillRgn

As show as the examples and the intersection

point rounding rules, the rectangle created with

CRgn::CreateRectRgn (int x1, int y1, int x2, int

y2) and the rectangle defined by CRect have the

consistent results that the right boundary and the

bottom boundary are not displayed (Figure 9 (a)).

The results of the judgment with PtInRegion and

PtInRect are same too.

// Draw a rectangular area (the result is same

as Figure 9 (a))

rgn.CreateRectRgn(1,1,9,7);

pDC->FillRgn(&rgn,&brush);

PtInRegion(rgn,9,7); //return 0

//Draw the polygon area of pentagram (Figure.

10 (a))

CPoint ps[10];

ps[0].x = 10; ps[0].y = 0;

ps[1].x = 7; ps[1].y = 8;

ps[2].x = 0; ps[2].y = 8;

ps[3].x = 6; ps[3].y = 12;

ps[4].x = 4; ps[4].y = 20;

ps[5].x = 10; ps[5].y = 16;

ps[6].x = 16; ps[6].y = 20;

ps[7].x = 14; ps[7].y = 12;

ps[8].x = 20; ps[8].y = 8;

ps[9].x = 13; ps[9].y = 8;

rgn.CreatePolygonRgn(ps,10,WINDING);//the

results are same drawing in both directions

pDC->FillRgn(&rgn,&brush);

//determine whether the 10 vertices are within

the polygon (results shown in Figure 10(b))

BOOL yn = 1, yn2=1,yn3=1, yn4=1, yn5=1,

yn6=1,yn7=1, yn8=1,yn9=1, yn10=1;

Figure 10: CRgn Filled by GDI

(a) (b)

34

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

yn = PtInRegion(rgn,10,0);

yn2 = PtInRegion(rgn,7,8);

yn3 = PtInRegion(rgn,0,8);

yn4 = PtInRegion(rgn,6,12);

yn5 = PtInRegion(rgn,4,20);

yn6 = PtInRegion(rgn,10,16);

yn7 = PtInRegion(rgn,16,20);

yn8 = PtInRegion(rgn,14,12);

yn9 = PtInRegion(rgn,20,8);

yn10 = PtInRegion(rgn,13,8);

The annotation of Create<shape>Rgn in the

MSDN: Regions created by the

Create<shape>Rgn methods (such as

CreateRectRgn and CreatePolygonRgn) only

include the interior of the shape; the shape’s

outline is excluded from the region. This means

that any point on a line between two sequential

vertices is not included in the region. If you were

to call PtInRegion for such a point, it would return

zero as the result[15].

According to the annotation in MSDN, all the

vertices and the integer pixel points of the

boundaries are not in the polygonal area. That is

all the values in the Figure 10(b) should be zero,

but that is not the case.

According to the intersection point rounding

rules and the processing of horizontal line, the

vertex ps[0], intersecting with the scanning line

y=0 on the right boundary, is determined not to

be within the polygon, no matter whether to regard

the ps[0] as one point or two points; During the

processing of scan line y= 8, the two horizontal

boundary are deleted firstly. According the

principle of “bottom–closed and top-open”, the

vertex ps[2] is determined to be within the polygon

and the vertex ps[8] is not, both vertexes are

intersecting with the scanning line y=8, because

ps[2] is a point on the left boundary while ps[8] is

a point on the right boundary; The scanning line

y=10, y=12 and y=18 is similar to the scanning

line y=8; The scanning line y=16 and the point (5,

16) on the left boundary, the vertex ps[5] and the

point (16, 16) on the right boundary are

intersecting. The ps[5] is counted as two points,

when to fill the pixels on the scanning line. The

(5,16) is filled with brush color, the ps[5] is not

filled when to fill the pixels between the (5, 16)

and ps[5], but when to fill the pixel between (16,

16) and ps[5], ps[5] will fill with brush color and

(16, 16) will not be filled. So it will return 1,1 and 0

to judge the three points with the function of

PtInRegion respectively; According the principle

of “bottom–closed and top-open”, the scanning

line y=20 does not intersect with ps[4] or ps[6],

so the two points are not inside the polygon.

According to the above analysis, it can be

seen that the judgment of the points on the

boundary using the function of PtInRegion is

inconsistent with the annotation in the MSDN.

In the application, if you want to display the

integer pixels on the boundary and all of the

vertices of the region, the function Polygon is

recommend. Program a new judgment function

based on the boundary point rounding rules above

when you need to decide whether the point is in

the region or on the boundary. The author have

wrote two functions to judge whether the point is

inside the polygon: BOOL PtInRegionEx (POINT

* ps, int num, POINT p) and BOOL PtInRgn

(POINT * ps, int num, POINT p) that have been

shown in the appendix. These two functions can

return TRUE with the point within the region and

the point on the boundary, and return FALSE with

the point outside the region.

35

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

It should be noticed when to display the

adjacent polygons with Polygon, the pixels of the

boundary will overwrite leading to repeating

drawing (Fig. 7 (right) intermediate boundary),

while the pixels of the adjacent polygons will not

overwrite if the polygons are filled with FillRgn

(Figure 11).

CONCLUSION
To sum up the experiments above, we can find

that the output of the GDI drawing functions of

the Windows follows the following criteria:

(1) Integer screen position represents the center

of the pixel area;

(2) The start pixel of the LineTo function, GDI

drawing line function, is correct. In order to

keep a fixed length of the line segments, the

LineTo function reduces a pixel at the end of

the line segment, resulting line pixels drawing

in different directions at the start and end points

are not consistent;

(3) The GDI drawing polyline function Polyline is

essentially a loop call for LineTo, therefor, there

is one less pixel at the end of polyline. Pixels

at the start and end points of polyline are not

consistent;

(4) GDI region filling function Polygon is equivalent

to draw the boundary pixels with Polyline, then

fill the internal pixel collection inside the

boundary, so the region through all the

specified pixels;

(5) GDI drawing ellipse function Ellipse can keep

the long axis and the short axis length of the

ellipse, but the boundary pixels are not

reasonable;

(6) GDI rectangle class CRect and region class

CRgn and respective filled functions,

according to the above rounding rule of the

boundary points, decide integer boundary

points are displayed or not, and how to display

fractional boundary points. So the call of

PtInRect and PtInRegion will receive

inconsistent results at boundary points.

In general visualization applications, it is not

necessary to consider how the GDI drawing

functions work. But in some special graphics

systems, such as when you need to measure

the geometry of the graphics, determine whether

the point is in the graphics or calculate the precise

distance from point to graphic in the application

system, we must get correct judging result and

accurate drawing result. Because the error of one

pixel on the screen may correspond to thousands

of meters.

ACKNOWLEDGEMENT
This work is supported by National Nature

Science Foundation of China project “Theory and

method of anisotropic property field inner geology

body based on volume function” (Projec number

41272367).

REFERENCES
1. [America] David E RogersProcedural

Elements for Computer Graphics[M]

Science PressBeijing198730-101.

Figure 11: Adjacent Rectangles Filled
by FillRgn-function

36

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

2. [America] Donald Hearn,M.Pauline

BakerComputer Graphics with OpenGL

Third Edition[M]PUBLISHING HOUSE OF

ELECTRONICS INDUSTRYBeijing201026-

185.

3. [America] Microsoft CompanyMicrosoft

Windows 3.1 Programmer Reference

(Second)[M]TSINGHUA UNIVERSITY

PRESSBeijing199391-641.

4. [America] Zhigang XiangComputer

Graphics with OpenGL[M]PEKING

UNIVERSITY PRESSBeijing200834-51.

5. Jianchun ChenVector Graphics System

Development and Programming

[M]Beijing200474-76.

6. LI Qing-yuanTAN HaiWANG TaoStudy on

defects in GDI/GDI+ rendering functions and

solutionsComputer Engineering and

DesignBeijing201132(12)4256-4259

7. Lie ZhuBin ZhouC/C++ Advanced

Programming under Windows[M]POSTS &

TELECOM PRESSBeijing200279-141

8. Microsoft .Microsoft Developer Network [EB/

OB], 2015/2015-4-29. https://msdn.

microsoft.com/en-us/library/windows/

desktop/dd162814(v=vs.85)

9. Microsoft .Microsoft Developer Network [EB/

OB], 2015/2015-4-29. https://msdn.

microsoft.com/en-us/library/windows/

desktop/dd162510(v=vs.85)

10. Microsoft .Microsoft Developer Network [EB/

OB], 2015/2015-4-29. https://msdn.

microsoft.com/en-us/library/windows/

desktop/dd162897(v=vs.85)

11. Microsoft .Microsoft Developer Network [EB/

OB], 2015/2015-4-29. https://msdn.

microsoft.com/en-us/library/windows/

desktop/dd162898(v=vs.85)

12. Microsoft .Microsoft Developer Network [EB/

OB], 2015/2015-4-29. https://msdn.

microsoft.com/en-us/library/windows/

desktop/dd183511(v=vs.85)

13. Microsoft. Microsoft Developer Network [EB/

OB],2015/2015-4-29. https://msdn.

microsoft.com/en-us/library/windows/

desktop/dd145029(v=vs.85)

14. Microsoft.Microsoft Developer Network [EB/

OB], 2015/2015-4-29. https://

msdn.microsof t .com/en-us/ l ib rary /

windows/desktop/dd162815(v=vs.85)

15. Mingtian NiLiangzhi WuComputer

Graphics[M]PEKING UNIVERSITY

PRESSBeijing199943-91

37

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

APPENDIX

BOOL PtInRegionEx(POINT *ps, int num, POINT p)

{

CRgn rgn;

rgn.CreatePolygonRgn(ps,num,WINDING);

BOOL YN = FALSE;

//bounding box of polygon

int minx = 999999999,maxx = -999999999,miny = 999999999,maxy = -999999999;

for(int i=0; i<num; i++)

{

if(ps[i].x <= minx)

minx = ps[i].x;

if(ps[i].x >= maxx)

maxx = ps[i].x;

if(ps[i].y <= miny)

miny = ps[i].y;

if(ps[i].y >= maxy)

maxy = ps[i].y;

}

//points in the bounding box

int Dx, Dy, j;

int minxl, maxxl, minyl, maxyl;//range of segments(bounding box)

if(p.x <= maxx && p.x >= minx && p.y <= maxy && p.y >= miny)

{

YN = PtInRegion(rgn, p.x, p.y);

if(YN == TRUE)

return YN;

else

{

for(j=0; j<num; j++)

{

38

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

APPENDIX

if(p.x == ps[j].x && p.y == ps[j].y)

YN = TRUE;

}

for(j=0; j<num; j++)

{

if(j == num-1)

{

if(ps[j].x <= ps[0].x)

{

minxl = ps[j].x;

maxxl = ps[0].x;

}

else

{

minxl = ps[0].x;

maxxl = ps[j].x;

}

if(ps[j].y <= ps[0].y)

{

minyl = ps[j].y;

maxyl = ps[0].y;

}

else

{

minyl = ps[0].y;

maxyl = ps[j].y;

}

Dx = ps[j].x - ps[0].x;

Dy = ps[j].y - ps[0].y;

39

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

//if the point is in the boundary

if((p.x<maxxl && p.x>minxl && p.y<maxyl && p.y>minyl)
&&
(Dx*(p.y-ps[j].y) + Dy*ps[j].x) == (Dy*p.x))

YN = TRUE;

}

else

{

if(ps[j].x <= ps[j+1].x)

{

minxl = ps[j].x;

maxxl = ps[j+1].x;

}

else

{

minxl = ps[j+1].x;

maxxl = ps[j].x;

}

if(ps[j].y <= ps[j+1].y)

{

minyl = ps[j].y;

maxyl = ps[j+1].y;

}

else

{

minyl = ps[j+1].y;

maxyl = ps[j].y;

}

Dx = ps[j].x - ps[j+1].x;

Dy = ps[j].y - ps[j+1].y;

APPENDIX

40

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

APPENDIX

//if the point is in the boundary

if((p.x<maxxl && p.x>minxl && p.y<maxyl && p.y>minyl)

&&(Dx*(p.y-ps[j].y) + Dy*ps[j].x) == (Dy*p.x))

YN = TRUE;

}

}

return YN;

}

}

//points outside the bounding box

else

return YN;

}

const double PI = 3.14159265;

double D2DistanceOfPointToLine(double xx,double yy,double x1,double y1,double x2,double
y2)

{

double a,b,c,ang1,ang2,ang,m;

double result=0;

//caculate length of each edge respectively

a = sqrt((x1 - xx) * (x1 - xx) + (y1 - yy) * (y1 - yy));

if (a == 0)

return 0;

 b = sqrt((x2 - xx) * (x2 - xx) + (y2 - yy) * (y2 - yy));

 if (b == 0)

 return 0;

 c = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));

 //if the segment is one point,exit and return the length

if (c == 0)

{

41

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

APPENDIX

result = a;

return result;

}

//if point(xx,yy) and point(x1,y1) are nearer

if (a < b)

{

//if the line AB is horizontal, calculate the radian of line AB

if (y1 == y2)

{

if (x1 < x2)

ang1 = 0;

else

ang1 = PI;

}

else

{

m = (x2 - x1) / c;

if (m - 1 > 0.00001)

m = 1;

ang1 = acos(m);

if (y1 >y2)

 ang1 = PI*2 - ang1;//radian of X-axis normal direction and line from (x1,y1) to (x2,y2)

}

 m = (xx - x1) / a;

if (m - 1 > 0.00001)

m = 1;

ang2 = acos(m);

if (y1 > yy)

 ang2 = PI * 2 - ang2;//radian of X-axis normal direction and line from (x1,y1) to (xx,yy)

42

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

APPENDIX

ang = ang2 - ang1;

if (ang < 0)

ang = -ang;

if (ang > PI)

ang = PI * 2 - ang;

//if it is obtuse angle,return the length

if (ang > PI / 2)

return a;

else

return a * sin(ang);

}

else//‚//if point(xx,yy) and point(x2,y2) are nearer

{

//if the y-coordinates of the two points are same

if (y1 == y2)

if (x1 < x2)

ang1 = PI;

else

ang1 = 0;

else

{

m = (x1 - x2) / c;

if (m - 1 > 0.00001)

m = 1;

ang1 = acos(m);

if (y2 > y1)

ang1 = PI * 2 - ang1;

}

m = (xx - x2) / b;

if (m - 1 > 0.00001)

43

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

m = 1;

ang2 = acos(m);//the radian of the slope of line (x2,y2)-(xx,yy)

if (y2 > yy)

ang2 = PI * 2 - ang2;

ang = ang2 - ang1;

if (ang < 0)

ang = -ang;

if (ang > PI)

ang = PI * 2 - ang;//angle of intersection

//if it is obtuse angle,return the length

if (ang > PI / 2)

return b;

else

//if it is acute angle,return the length through calculation

}

}

BOOL PtInRgn(POINT *ps, int num, POINT p)

{

int minx = 999999999,maxx = -999999999,miny = 999999999,maxy = -999999999;

for(int i=0; i<num; i++)

{

if(ps[i].x <= minx)

minx = ps[i].x;

if(ps[i].x >= maxx)

maxx = ps[i].x;

if(ps[i].y <= miny)

miny = ps[i].y;

if(ps[i].y <= maxy)

maxy = ps[i].y;

APPENDIX

44

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

}

if(p.x <= maxx && p.x >= minx && p.y <= maxy && p.y >= miny)//judge the points in the
bounding box

{

double mind = 999999999, d1;

int index=-1, i, j;

for(j=0; j<num; j++)

{

if(j==num-1)

d1 = D2DistanceOfPointToLine(p.x,p.y,ps[j].x,ps[j].y,ps[0].x,ps[0].y);

else

d1 =
D2DistanceOfPointToLine(p.x,p.y,ps[j].x,ps[j].y,ps[j+1].x,ps[j+1].y);

if(d1>=0 && d1<=mind)

{

mind = d1;

index = j;

}

}

double v = 0.0;

if(index>-1 && index<num-1)

{

v = -((ps[index].x - p.x)*(ps[index+1].y - p.y) - (ps[index].y -
p.y)*(ps[index+1].x - p.x));

}

else if(index == num)

v = -((ps[index].x - p.x)*(ps[0].y - p.y) - (ps[index].y - p.y)*(ps[0].x - p.x));

if(v<0) //if the point is on the right of the line

mind = -mind;

//return false with the points outside the polygon

if(mind<0)

APPENDIX

45

Int. J. of Geol. & Earth Sci., 2015 Chunmei Chen et al., 2015

return FALSE;

else //return true with the points inside the polygon and in the boundary

return TRUE;

}

else//return false with the points outside the bounding box

return FALSE;

}

APPENDIX

