Pliocene-Pleistocene Calcareous Nannoplankton Biostratigraphy, Section Banyuurip, Rembang Zone, East Java Basin, Indonesia

Siti U. Choiriah, Carolus Prasetyadi, and Dwi F. Yudiantoro Department of Geology Engineering, UPN "Veteran" University, Yogyakarta, Indonesia Email: {umiyatunch, d_fitri}@yahoo.com, {umiyatunch, cprasetyadi}@upnyk.ac.id

Rubiyanto Kapid Department of Geology, Bandung Institute of Technology, Bandung, Indonesia Email: ruby@gl.itb.ac.id

Nanda A. Nurwantari Department of Earth Resource Science, Akita University, Akita, Japan Email: nandajengn@gmail.com

Abstract-The present study was carried out at the Banyuurip area in the East Java Basin, Indonesia, a site contains nannofossil assemblages of Pliocene to Pleistocene, with lithology is suitable for nannoplankton research. Methods used in this research include making a Stratigraphical section Measurement, collecting 41 samples and preparing the samples with the smear slides method to be observed using a polarizing microscope with 1000x magnification, and preparing several rock samples using SEM analysis. Analysis of nannofossil resulted in identifying 19 genus and 51 species. Biostratigraphic zone of this study can be arranged into 9 biostratigraphic zones. The zone order from older to younger are: a) Sphenolithus neoabies Zone /NN12/Late Miocene to Early Pliocene, b) Ceratolithus rugosus Zone /NN13/Early Pliocene, c) Discoaster pseudoumbulicus asymmetricus-Reticulofenestra Range Zone/NN14-NN15/Early Pliocene to Middle Pliocene, d) Discoaster surculus Zone/NN16/Middle Pliocene, e) Discoaster pentaradiatus Zone/NN17/Late Pliocene, f) Discoaster brouweri Zone/NN18/Late Pliocene, g) Gephyrocapsa caribbeanica Zone/NN19 **Zone/Early** Pleistocene, h) Gephyrocapsa oceanica Zone/NN20 Zone/Middle Pleistocene, and i) Emiliania huxlevi Zone/NN21 Zone/Late Pleistocene.

Index Terms—nannofossil, biostratigraphy, Rembang zone

I. INTRODUCTION

The research area is located in the Banyuurip area of Rembang Zone, East Java Basin Indonesia. North East (NE) Java Basin is composed of the Kendeng and Rembang Zones. These two zones are separated by Randublatung High. The Kendeng zone is an anticlinorium with a general east-west direction. The northern part of Kendeng Zone is bounded by the Randublatung Depression while to the south it is bordered by the Quaternary volcano range (Solo Zone). Kendeng Zone extends from Salatiga in the west to Mojokerto area in the East and drops below the alluvial of the Brantas River, and its continuation can still be followed up below the Madura Strait [1] "Fig. 1".

Figure 1. Physiography of East Java Basin [1].

The North East Java Basin was divided into seven tectonic units - physiographical exchanges from north to south as follows: 1) Alluvial Plain of North Java 2) Anticlinorium Rembang-Madura-Cepu 3) Randublatung Zone and Dander Hills, Pegat and Ngimbang, 4) Kendeng Zone, 5) Central Java Plain, 6) Volcanic Belt, 7) Southern Mountain Zone [1].

A. Pliocene to Pleistocene

The Pliocene-Plistocene was the most important moment in the geological history of Java. At this time, an orogenic process occurs causing the formation of mountains, folds, and faults in a relatively short time and covers a narrow area in the form of fold-thrust belt of Kendeng Mountain and the Rembang Anticlinorium, etc.

Pliocene: At this time the North East Java Basin experienced a transgression where the the limestone of

Manuscript received July 16, 2020; revised November 22, 2020.

Paciran Formation was deposited that was not aligned above the Tuban Formation. This formation is quite widespread and is dominated by limestone with shallow marine environment [2].

Pleistocene: A regression phase occurs with the deposition of Kabuh Formation (terrestrial environment) and unconformable with the above Paciran Formation [2]. In some places the Kabuh Formation was deposited in a transitional environment. At this time there was also an extreme climate change (glaciation), a drastic fall in the temperature of the earth which hit most of the world, including Indonesia and resulted in the formation of the configuration of the Indonesian archipelago as it is today [3].

B. Regional Stratigraphy of Rembang Zone

Based on lithological characteristics, rocks occurring in the study area can be grouped into a number of formal lithostratigraphic units, from older to younger, are: Wonocolo, Ledok, Mundu, and Lidah Formations (Fig. 2). These four formations are from the Late Miocene to Pleistocene [4]. This stratigraphy could be modified [5] regarding global climate change that happened during the glacial-interglacial Ice Age. Therefore this modification of the stratigraphy is possible as the object of the present study on determining the boundary of Tertiary-Quaternary using nanofossil data.

Figure 2. Regional stratigraphy [5].

C. Method and Material

Methods used in this research include making a stratigraphical measurement section at the field, collecting 41 samples and preparing the samples with the smear slides method to be observed using a polarizing microscope with 100x magnification and preparing several rock samples using SEM analysis. Analysis of

nannofossil resulted in identification 19 genus and 51 species. Fossil photos were taken using a microscopic camera (*Moticam*) connected to a laptop or computer. Names of genus and species referenced from previous researchers by Martini (1971), Okada and Bukry (1980), Perch and Nielsen (1985), Aubry (1985) and Nannotax3

The appearance of nannofossil species in each rock sample is the main data of this study. The relative abundance of individual species was estimated [6]:

VA = Very Abundant (over 10 specimens per field of view).

A = Abundant (1-10 specimens per field of view).

C = Common (one specimen per 2 to 10 fields of view).

F = Few (one specimen per 11 to 100 fields of view).

R= rare (1 to 2 specimens per slide)

II. RESULT AND ANALYSIS

The lithostratigraphic nomenclature used in this study follows regional stratigraphy [4]. Local Stratigraphy of the Banyuurip section in this study area is composed Calcarenite unit of Ledok Formation, Marl unit of Mundu Formation and Calcareous claystone unit of Lidah Formation "Fig. 3". The age classification used in determining based on Martini (1971) and classification of bathymetry followed Tipsword, *et al.*, 1966 and Wright Barker, 1960).

A	GE	BIOSTRATIGRAPHIC CORRELATION CHART			UNIT OF	
		FORAMINIFERA	NANNOFOSSIL	FOR		
		N23	NN21		JS E	
PLEISTOCENE			NN20	IDAH	ALCAREOL	
		N22	NN19			
			NN18	-		
PLIOCENE	LATE	N21	NN17		30	
			NN16	UNDU		
		N20	NN15		AARI	
	EARLY		NN14	Μ	V	
		N19	NN13		ITE	
MIOCENE	LATE	N18	NN12	рок	AREN	
		N17	NN11	ш	ALC,	
		N16			Ċ	
		N15	NN10			

Figure 3. Local stratigraphy of this area.

A. Calcarenite Unit of Ledok Formation

The unit is dominated by calcarenite, with intercalation of limestone, calcarenite, marl and and sandy limestone and also contains a lot of the glauconite. The sedimentary structures are massive, lamination, parallel bedding and cross bedding "Fig. 4". Age of this unit is NN11-NN13 (Late Miocene to Middle Pliocene), while based on foraminifera in regional stratigraphy is N16 to N17/Late Miocene [3]. This unit also has benthic foraminifera such as: *Nodosaria catenula, Amphycorina separans, Bulimina pupoides, Nonion asterizans, Dentalina gutifera* which show a bathymetry environment of 100m to 200m or outer neritic and thickness of the unit around 150-200 meters [7], [8].

Figure 4. Calcarenite intercalating with limestone, sandy limestone and marl of the Ledok Formation.

B. Marl Unit of Mundu Formation

This unit is dominated by marl, very thick, massive structure, containing many foraminifera, so it is known as Mundu Marl. Characteristic color of this lithology is bluish-gray and brownish-white "Fig. 5" Stratigraphically it is conformable with calcarenite unit of Ledok Formation. Age of this unit is NN13 to NN16 (Early Pliocene to Middle Pliocene) on the basis of First Occurrence (FO) Discoaster asymmetricus and Last Occurrence (LO) Reticulofenestra pseudoumbilicus and Discoaster surculus [7]-[11]. The bathymetry of the unit is upper bathyal to lower bathyal (200-2000) meters [12], [13] while the thickness is (150-200) meters.

Figure 5. Marl outcrop of Mundu Formation.

C. Calcareous Claystone Unit of Lidah Formation

This unit is dominated by calcareous claystone and claystone, massive structure and there are fragments of mollusc shells "Fig. 6". This unit is NN16 to NN18 (Middle Pliocene-Late Pliocene) based on last occurrence of *Reticulofenestra pseudoumbilicus, Discoaster surculus, Discoaster pentaradiatus, Discoaster brouweri* [7]-[11]. This unit was deposited of the inner bathyal to upper bathyal (200-500) meters [12], [13], and the thickness of 170-200 meters.

Figure 6. Calcareous claystone Unit of Lidah Formation.

D. Biostratigraphy

Nannofossil biostratigraphy in this study has been compiling based on Measure section data consisting of 41 samples outcrop. The results of the analysis showed that there were 19 genus, 51 species and 9 zone of biostratigraphy (Table I). The abundant of nannofossils are found in marl lithology and calcareous claystone. The classification of genus and species refers to Perch-Nielsen (1985) and Bown, *et al.*, (1998) [14].

Nannofossils biostratigraphy is arranged based on the First Occurrence (FO) or First Appearance Datum (FAD) and Last Occurrence (LO) or Last Appearance Datum (LAD) of the species index of nannofossil. Based on the data of nannofossil analysis, there are 9 Zone (8 Interval Zone and 1 of Range Zone). The Zone are listed in (Table II) and the explanation is as follows:

1) Interval Zone of *Sphenolithus neoabies* Zone (NN12)

Interval Zone of *Ceratolithus rugosus* Zone (NN13)
 Range Zone of *Discoaster asymmetricus* to

Reticulofenestra pseudoumbilicus Zone (NN14 to NN15)

4) Interval Zone of *Discoaster surculus* Zone (NN16)

5) Interval Zone of *Discoaster pentaradiatus* Zone (NN17)

6) Interval Zone of *Discoaster brouweri* Zone (NN18)

7) Interval Zone of *Gephyrocapsa caribbeanica* Zone or *Pseudoemiliania lacunose* Zone (NN19)

8) Interval Zone of *Gephyrocapsa oceanica* Zone (NN20)

9) Interval Zone of *Emiliania huxleyi* Zone (NN20).

III. DISCUSSION

A. The Pliocene Biostratigraphy: 6 Zone

1) Sphenolithus neoabies Zone (NN12 Zone)

This Zone is determined based on FO *Sphenolitus neoabies* [7] the presence of this species indicates Middle Miocene to Early Pliocene (NN7–NN15) dan FO *Sphenolitus neoabies* characterizing of the bottom NN12 Zone, so this zone as a NN12.

2) Ceratolithus rugosus Zone (NN13 Zone)

The datum plane of *Ceratolithus rugosus* to indicated by FO *Ceratolithus rugosus* (Early Pliocene to Pleistocene or NN13 to NN19). The first occerunce of this species characterizes the base of NN13 so that the age of this biodatum is the base of NN13 [7].

3) Discoaster asymmetricus - Reticulofenestra pseudoumbilicus Zone (NN14 to NN15 Zone)

This zone is determined based on the FO *Discoaster* asymmetricus (Early Pliocene to Late Pliocene / NN14-NN17), no boundaries were found so species were used LO *Reticulofenestra pseudoumbilicus* is Middle Miocene to Late Pliocene (NN5 to NN15), and the LO of this species is used as NN15

4) Discoaster surculus Zone (NN16 Zone)

This zone is determined based on LO *Discoaster surculus*, Late Miocene to Early Piocene, (N10 to NN16) and used for base of NN16 Zone.

DATA OF THE CALCAREOUS NANNOPLANKTON OF THIS STUDY AREA

= Common (one specimen per 2 to 10 fields of view) F = Few (one specimen per 11 to 100 fields of view).

TABLE I.

5) Discoaster pentaradistus Zone (NN17 Zone)

This zone is determined based on LO Discoaster pentaradiatus. This species appears in Late Miocene to Late Pliocene (NN9 to NN17) and the LO Discoaster pentaradiatus characterizes the top of NN17. Age of this zone is the top of NN17 equivalent to the absolute age of 2.2 Ma [7]. This zone is determined based on the LO of Discoaster pentaradiatus. This species appeared in Late Miocene to Late Pliocene (NN9 to NN17) and the LO of Discoaster pentaradiatus characterizes the top of NN17 [4]. Age of this zone is the top of NN17 equivalent to the absolute age of 2.2 Ma [7].

6) Discoaster brouweri Zone/NN18 (Late Pliocene), to indicated by LO Discoaster pentaradiatus and upper part based on LO Discoaster brouweri. This zone genus of Gephyrocapsa has not yet appeared.

B. The Pleistocene Biostratigraphy: 3 Zone

1) Gephyrocapsa caribbeanica Zone orPseudoemiliania lacunose Zone (NN19 Zone)

This zone is determined based on four species indexes. The absence of Discoaster brouweri, FO Ceratolithus cristatus, FO Gephyrocapsa caribbeanica, LO Pseudoemiliania lacunose indicates age of Early Pleistocene (NN19). In this zone Gephyrocapsa oceanica have not yet been found

Gephyrocapsa oceanica Zone (NN20 Zone) 2)

This zone indicated by the absence of Pseudoemiliania lacunose, and FO Gephvrocapsa oceanica, so this data concluded of Middle Pleistocene (NN20). In this zone Emiliania huxleyi have not found,

3) Emiliania huxleyi Zone (NN21 Zone)

R= rare (1 to 2 specimens per slide)

This zone is determined based on FO *Emiliania huxleyi*, so concluded of Late Pleistocene (NN21).

 TABLE II.
 Nannofossil Zonation Scheme Modified with Martini (1971) and Okada Bukry (1980)

Ŧ							TIONS			
F O+M19+B2:M44+M19+B2	UNIT OF LITHOLOGY	AGE	ZONATI OF NANNOPLANKTON	NUMBER of SAMPLE	FIRST OR LAST OCCURRENCE	NANNOFOSSILS EVENT	ZONE OF BIOSTRATIGRAPH	ZONE OF MARTINI, 1971	ZONA OF OKADA BUKRI, 1980	NANNOFOSSILS INDEX
		NE		R1 R2	1	FO Emiliani huxleyii	Interval Zone	NN21	15	Emiliani huxleyii
	ш	LIOCE		R3 R4	1	FO Gephyrocapsa oceanica	Interval Zone	NN20	14b	G. oceanica
MATION	CLAYSTON	LATE F	12.NV	R5 R6 R7 R8	1	FO Geph.caribbeanica/FO Pseudoemiliania lacunosa	Interval Zone	NN19	13a- 14b	G. caribbeanica / P. lacunosa
LIDAH FOR	ALCAREOUS (IOCENE TO	NN.16 - I	705 665 590 575 555	*	LO Discoaster brouweri	Interval Zone	NN18	12d	Discoaster brouweri
	С	DLE PL		515 460	¥	LO Discoaster pentaradiatus	Interval Zone	NN17	12c	D.pentaradiatus
				455 450 385	*	LO Discoaster surculus	Interval Zone	NN16	12a-12b	D. surculus
MUNDU FORMATION	MARL	EARLY PLIOCENE TO MIDDLE PLIOC	91. NN - EL. NN	365 360 345 300 285 275 265 255 235 225 215 205	^ ≁	LO R.pseudoumbilicus FO D.asymmetricus	Range Zone	NN14 to NN15	11a-11b 10c	D.asymmetricus - R. pseudoumbilicus
z		CENE		195 185	1	FO Ceratolithus rugosus	Zona Selang	NN13	10c	Ceratolithus rugosus
LEDOK FORMATIO	CALCARENITE	LATE MIOCENE TO EARLY PLIO	NN12 - NN.13	175 165 125 90 80 70 60		FO Sphenolithus neobies	Interval Zone Partial	NN12 NN11	10a-10c	Sphenolithus neoabies
				50			Zone			,

IV. CONCLUSION

A. Stratigraphy

121

Stratigraphy of this study based on nannofosils is Late Miocene to Late Pleistocene (NN12 to NN21). The stratigraphic sequence from older to younger are Calcarenite Unit of Ledok Formation (Late Miocene to Early Pliocene/NN12 to NN13), was deposited in the outer Neritic (100-200) meters. Marl Unit of Mundu Formation is Early Pliocene-Middle Pliocene (NN13 to NN16) in the upper bathyal to lower bathyal (200-2000) meters. Calcareous claystone Unit of Lidah Formation is Middle Pliocene to Late Pleistocene (NN16 to NN21), was deposited in the Inner Neritic to upper bathyal (200-500) meters.

B. Biostratigraphy

Biostratigraphy of this study can be arranged into 9 biostratigraphic zones. The zones are:

- 1) Sphenolithus neoabies zone /NN12 (Late Miocene to Early Pliocene).
- 2) Ceratolithus rugosus zone /NN13 (Early Pliocene).
- 3) Discoaster asymmetricus–Reticulofenestra pseudoumbulicus Range Zone/NN14-NN15.
- 4) Discoaster surculus zone/NN16 (Middle Pliocene).

- 5) Discoaster pentaradiatus Zone/NN17 (Late Pliocene.
- 6) Discoaster brouweri zone/NN18 (Late Pliocene)
- 7) *Gephyrocapsa caribbeanica* zone/NN19 Zone (Early Pleistocene).
- 8) Gephyrocapsa oceanica zone/NN20 Zone (Middle Pleistocene),
- 9) Emiliania huxleyi zone/NN21 Zone (Late Pleistocene),

CONFLICT OF INTEREST

The research location is in the oil field of PT. Pertamina. Licensing has been approved and in this study conducted without a conflict of interest.

AUTHOR CONTRIBUTIONS

Ir. Siti U. Choiriah, M.T. contribution to conception, design, acquisition, analysis and interpretation of data preparation of articles. Dr. Ir. C. Prasetyadi, M.Sc. contribution to the Regional Stratigraphic Rembang Zone, critical review and final approval of the submitted version. Dr. Ir. Dwi Fitri Yudiantoro, M.T. Local stratigraphy, critical review and final approval of the submitted version. Dr. Ir. Rubiyanto Kapid, discussion of the result of the nannofossil analysis, final approval of the submitted version. Nanda Ajeng Nurwantari, S.T. contribution to preparation and analysis of Nannofossil, contents of articles, final approval of the submitted version, and presentation of papers.

ACKNOWLEDGMENT

We would like to thank LPPM UPN "Veteran" Yogyakarta, Indonesia (for internal research foundation), Mahap Maha, Herry Riswandi for helping in the field work, also thanks to Ariq Fadhilah and Ruben that helped collect field data and the fossil analysis. Our thanks also go to Chair of Geological Engineering Department, FTM, UPN "Veteran" Yogyakarta for the support to our research. We would also to thanks all reviewers for their useful suggestions to our work.

References

- R. W. V. Bemmelen, *The Geology of Indonesia*, Nijhoff, The Hague: Government Printing Office, 1949, pp. 545-550.
- [2] Premonowati, R. P. Koesoemadinata, H. Pringgoprawiro, W. S. Hantoro, "Oxygen and carbon isotope stratigraphy of the East Java Paciran Formation," in *Proc. the Seminar on Nuclear Geology and Mining Resources*, Batan's Center for Excavation and Nuclear Geology, Jakarta, 2003, pp. 208-219.
- [3] S. Aziz and L. P. Ungkap. (November 2014). Global climatic change. *Garut.* [Online]. Available: https://inaquarter.com/index.php?option=com_content&view=arti cle&id=96%3Agcc&catid=38%3Aartikel&Itemid=57
- [4] H. Pringgoprawiro, "Biostratigrafi dan palaeogeografi Cekungan Jawa Timur Utara pendekatan baru," Ph.D. dissertation, Dept. Geology Engineering, ITB, 1983.
- [5] S. Husein, Petroleum and Regional Geology of Northeast Java Basin, Indonesia, Guide Book of the International Geology Course Programme, Department of Geological Engineering, Universitas Gadjah Mada, 2015.
- [6] E. Martini, "Standard tertiary and quaternary calcareous nannoplankton biozonation," in *Nannofossils Biostratigraphy Part III: 12, Cenozoic Biostratigraphy*, Bilal U.Haq, Ed., Stroudsburg, Pensylvanian: Hutchinson Ross Publishing Company, 1971.

- [7] H. Okada and D. Bukry, "Supplementary modification and introduction of code numbers to the low latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975)," Marine Micropaleontology, vol. 5, pp. 321-325, 1980.
- [8] Perch and Nielsen, "Cenozoic calcareous nannoplankton, ch. 10," in Plankton Stratigraphy, H. M. Bolli., J. B. Saunders, and P. K-Nielsen, Ed., Cambridge: Cambridge Earth Science Series, Cambridge Univ. Press, 1985.
- [9] Aubry, Handbook of Cenozoic Calcareous Nannoplankton, Book 1: Ortholithae (Discoasters), New York: Micropaleontology Press, American Museum of Natural History, 1985, pp. 266-280.
- [10] Nannotax3. [Online]. Available: http://www.mikrotax.org/Nannotax3/index.php?dir=Coccolithoph ores
- [11] J. M. Self-Trail, "Paleogene calcareous nannofossils of the South Dover Bridge core, Southern Maryland (USA)," Journal Nannoplankton Res., vol. 32, no. 1, pp. 1-28, 2011.
- [12] H. L. Tipsword, F. M. Setzer, and F. L. J. Smith, Interpretation of Depositional Environment in Gulf Coast Petroleum Exploration from Paleoecology and Related Stratigraphy, America: Transaction Gulf Coast Association of Geological Societies, 1966, v. 16, pp. 119-130.
- [13] R. W. Barker, Taxonomic Notes, Houston, Texas: Shell Development Company, 1955, pp. 102-145.
- [14] P. R. Bown and J. R. Young, "Introduction," in Calcareous Nannofossil Biostratigraphy, Springer, 1998, pp. 1-15.

Copyright © 2020 by the authors. This is an open access article distributed under the Creative Commons Attribution License (CC BY-NC-ND 4.0), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is noncommercial and no modifications or adaptations are made.

Siti U. Choiriah was born in Semarang on October 10, 1963. She obtained a Bachelor of Engineering degree from the Department of Geology Engineering, UPN "Veteran" Yogyakarta, Indonesia in 1990. And she completed the Magister Sains Programme and the PhD Programme at the Department of Geology, Department of Geology, ITB Bandung, Indonesia in 2000. Since 2017, she has been a Student of PhD Program at the

Department of Geology Engineering, UPN "Veteran" Yogyakarta, Indonesia.

Carolus Prasetyadi was born in Yogyakarta on November 4, 1958. He studied for a Bachelor of Engineering degree at the Department of Geology Engineering, UPN "Veteran" Yogyakarta, Indonesia from 1978 to 1985. And he completed Magister Sains Programme at the Department of Geology, West Virginia University, USA from 1993 to 1995 and PhD Programme at the Department of Geology, Department of Geology, ITB

Bandung, Indonesia from 2002 to 2007.

April 20, 1955. He obtained a Bachelor of Engineering degree from the Department of Geology, FIKTM, Institute Technology Bandung, Indonesia in 1982. And he completed Magister Sains Programme at Universite Claude Bernard Lyon, Lyon Perancis in 1988. He became a Doctor at Universite De Reims Champagne Ardenne, Perancis in 1991.

Rubiyanto Kapid was born in Jakarta on

Dwi Fitri Yudiantoro was born in Madiun on February 25, 1963. He obtained a Bachelor of Engineering degree from the Department of Geology Engineering, UPN "Veteran" Yogyakarta, Indonesia in 1987. And he completed Magister Sains Programme and PhD Programme at the Department of Geology, Department of Geology, ITB Bandung, Indonesia in 1997 and PhD Programme at the Department of Geology, Department of Geology, ITB Bandung, Indonesia in 2014.

Nanda Ajeng Nurwantari was born in Jakarta on April 6, 1995. She studied for a Bachelor of Engineering degree at the Department of Geology Engineering, UPN "Veteran" Yogyakarta, Indonesia from 2013 to 2017. And since 2019, she has studied for her Master of Science degree at the Department of Earth Resource Science, Akita University, Japan.